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STRUCTURE AND REACTIVITY OF OLIGONUCLEOTIDES. PART I KINETICS OF THE NON-ENZYMATIC
TRANSPHOSPHORYLATION OF ADENYLYL-(3'-5')-ADENOSINE 3'-PHOSPHATE AND

OTHER DINUCLEOTIDES
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Kinetics of the non-enzymatic transphosphorylation of several diribo-
nucleotides have been studied. First-order rate constants for the
reactions, which are acid-base-catalyzed, have been obtained. Base-

sequence and base composition dependent nature of rates is discussed.

For a better understanding of the conformation of ribonucleic acids (RNA) in
solution, the conformation and conformational stability of simple oligoribonucleo-
tides of various base composition have been extensively studied.l) The stability of
the conformation of a single-stranded polynucleotide in aqueous solution is deter-
mined by various forces such as "vertical stacking"” between neighboring bases and
electrostatic interactions originated from negatively charged phosphate groups.z)
Tinoco and his co-workers3'4) have first demonstrated using optical rotatory disper-
sion (ORD) that dinucleoside monophosphates adopt a dissymmetrical single-stranded
helical conformation under certain conditions. The thermal denaturation was also
shown to be a non-cooperative process.s) Thus, diribonucleotides of different base
composition are suitable models for detailed conformational studies of single-
stranded helical polynucleotides by physico-chemical techniques: absorption, ORD,
circular dichroic (CD) and nuclear magnetic resonance (NMR) spectral analysis, and X-
ray crystallographic method. For this, such studies of dinucleotides have been
6-12)

actively pursued in many laboratories. However, the correlation of these con-

formational characteristics with reactivity of oligonucleotides, if any, have been

3 The present investigation has been initiated with the aim

much less investigated.l
that the study of non-enzymatic transphosphorylation of certain natural substrates
should provide further information for elucidating the mechanism of ribonuclease-
catalyzed reactions of these substrates. The annexed scheme for diadenylic acid,

a typical dinucleotide, shows the reactions and equilibrium involved in neutral

solution, where (ApAp)_ and (ApAp). . denote "stacked"and "unstacked" species of ApAp,
s u
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and the portions inside the square bracket exist in dynamic equilibrium [for ApA,

8.

(<] o
A4H unstacking 5.3 kcal/mole and 4S unstacking 20 cal/deg.mole
A
(ApAp) . H,0
1L ~—--3> AMP 4+ Ap-cyclic -—--==":-- > AMP
transphosphorylation hydrolysis
(ApAp) |

k =k [(apAp) 1 + Xk [(ApAp) ]
Diribonucleotides used in this study were prepared by a partial hydrolysis of
RNA in 0.2M-NaOH followed by column-chromatographic separations with DEAE-Sephadex

14) On

A-25 and Dowex 1-x2 anion exchangers and purified as previously reported.
addition of salt-free ApAp(3') and other dinucleotides to 0.2M-NaOH solution, time-
dependent changes of the optical properties typical of a single-stranded helical

conformation were observed. At 25°C dinucleotides used in this study still have an

7)

appreciable fraction of bases in a stacked conformation, so that, using an auto-
recording ORD/UV-5 spectropolarimeter, changes in optical rotation at a selected
wavelength with time could be recorded continuously after preparing the solution for
reaction. The optical rotation changed followed first-order rate equation, i.e.,
the plots of log[([¢]t - [¢]Oo)/[¢]oo] vs time are good straight lines, and experi-
mental values for the rate constant, k(in sec—l), obtained from these measurements

at 25° are: UpGp, 6.47x10_5; CpGp, 3.87x10-5; GpUp, 3.03x10_5; ApUp, 2.09x10_5; ApGp,

2.01x10—5; ApCp, l.90x10_5; ApAp, 1.53x10_5. The present results again confirmed
the previous observation that RNase A-susceptible sequences are more quickly hydro-
lyzed in alkali than are RNase A-resistant bonds, viz., PyPu and PyPy:> PuPu and

15)

PuPy linkages. Furthermore, in a series of adenylyl dimers, ApXp, a small but
definite variation in rate was noticed and the stacking interaction tendency of these
dimers as measured by the difference ORD, [(2)]dimer - §z[¢]monomer’ is in agreement
with the above reactivity order, indicating that parallel bases-base stacking inter-
action is indeed responsible for the reactivity defined in this study. Incidentally,
it should be noted that a highly hydrophobic dinucleotide sequence found in E. coli

6 6,N6—dimethyl adenosine 3'-phosphate,

16,17)

ribosomal RNA, N°,N°-dimethyl adenylyl-(3'-5')-N

is known to show strong resistance to alkaline hydrolysis.

Thermodynamic parameters for the transphosphorylation have been estimated from
the dependence of rate on temperature and are listed in Table I. A striking devia-
tion from Arrhenius plots has been observed in the case of ApAp(3'). Non-linear

Arrhenius plots can be explained if the heat capacities are considerably different



Chemistry Letters, 1972 571

Table I. Thermodynamic parameters

Dinucleotide AH*(kcal/mole) AS*(e.u.)
ApAp(3') 20.6* —11.4*
ApCp (3'") 19.0 -16.4
ApGp (3') 18.7 -17.2
ApUp (3") 18.6 -17.4
GpUp(3"') 17.4 -20.9
UpGp (3') 16.0 -24.0
CpGp(3') 18.4 -17.1
ApAp(3"') at 60° 17.4 -21.6

at 0.5° 22.3 - 7.9

* Values at 25°
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Figure. Possible routes for the transphosphorylation and breakdown of a dinucleotide.
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in the reactant and transition state for the kS route in the transphosphorylation
of ApAp, i.e.,lep*<§'0 for ks route, and in accord with this the energy and entropy
of activation were found to decrease as the temperature was raised. A more detailed

18) Those having one or two protolytic bases

account will be reported elsewhere.
(uridylyl or guanylyl residue) in XpYp appear to contribute to a larger negative
AS:t value in the reaction, and thus the greater stability of the transition state
for UpGp can be attained at the expense of.ds*, which becomes more negative. How-
ever, more extensive studies are necessary in order to obtain more precise correla-
tion between the activation parameters and the structure of dinucleotides.

Finally, the failure to detect the formation of the (2'-5')-phosphodiester
isomer of a dinucleotide, when combined with the "preference rule"lg’zo) defined by
Westheimer, may be taken as supporting evidence for the suggestion that the trans-

phosphorylation of a dinucleotide in alkaline conditions proceeds through simple

intramolecular SNZP or "in-line" mechanism rather than the "pseudo-rotation" mecha-

nism as depicted in Figure.
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